Bioinformatics-Curriculum -15

SHAHEED BENAZIR BHUTTO WOMEN UNIVERSITY PESHAWAR

CURRICULUM 2015 & Onwards

BIO-INFORMATICS

Bioinformatics-Curriculum -15

SHAHEED BENAZIR BHUTTO WOMEN UNIVERSITY PESHAWAR

CURRICULUM OF BIO-INFORMATICS

Department of Bio-informatics SHAHEED BENAZIR BHUTTO WOMEN UNIVERSITY PESHAWAR

SHAHEED BENAZIR BHUTTO WOMEN UNIVERSITY PESHAWAR

Title:

"REVISED BIO-INFORMATICS CURRICULUM 2015"

Approved from Statutory Bodies:

3rd Meeting of the Board of Studies held on Wednesday, 4th November, 2015 5th Meeting of the Academic Council held on Friday, 18th December, 2015 ^{16th} Meeting of the Syndicate held on Friday, 3rd June, 2016.

Compiled By:

Department of Bioinformatics. Shaheed Benazir Bhutto Women University, Peshawar.

Important Note: No part of this Curriculum will be reproduced translated or stored in retrieval System or transmitted in any form or by any means electronic, mechanical, photocopying or otherwise without the prior permission of the Registrar Office, Shaheed Benazir Bhutto Women University, Peshawar.

Obtainable From: Academics Section. Shaheed Benazir Bhutto Women University, Peshawar. University Avenue,Landa Sarak.Larma,Charsada Road, Peshawar, Phone Number: 091-9224700.

CONTENTS

S.NO	CONTENTS	PAGE NUMBER
1	Introduction to Department of Bioinformatics	5
2	Background	5
3	Mission	6
4	Vision	6

CURRICULUM FOR BS BIO-INFORMATICS

5	Undergraduate Program in Bioinformatics		08
6	Mission Statement of the BS Programme		08
7 8 9 10 11 12 13 14 15 16 17 18 19 20	Programme Objectives Outcomes of the Programme Requirements of the BS Programme Admission Requirements Eligibility Duration Course and Credit Requirements Evaluation Structure Layout Scheme Of Studies Detail Of Course Outline (Semester I-Semester VIII) List of Recommended Books MS-Bioinformatics		08 09 09 09 09 09 09 10 11-13 14-16 18 - 46 47-48 49
21	Introduction		50
22	Scheme of Studies	51	
23	Detail of Course Outline (Semester I-Semester IV)	51-57	
24.	List of Recommended Books	58-59	

SHAHEED BENAZIR BHUTTO WOMEN UNIVERSITY PESHAWAR

DEPARTMENT OF BIOINFORMATICS

INTRODUCTION TO DEPARTMENT OF BIOINFORMATICS

Momentum for development of bioinformatics at the Shaheed Benazir Bhutto Women University Peshawar can be traced to the establishment of the Department of Bioinformatics.

Bioinformatics, by its nature, is multidisciplinary. At the University, we have built a core set of bioinformatics faculty, staff and students from Pre-Medical & Pre-Engineering background.

In the Bioinformatics discipline, faculty members are involved in the acquisition, representation, modeling, integration, interpretation, and transformation of biomedical data.

Their work spans a range of activities including biochemical systems theory, biological

process modeling, biomarker identification, machine learning, analysis and interpretation of genomic and proteomic data, text data mining, identification of gene regulatory networks, ontology development, and design and implementation of clinical decision aids. They combine multidisciplinary research and collaborative arrangements with basic and clinical sciences to provide an integrated approach to the development of new ontological approaches and synthesis of new and existing knowledge in medicine and the biological sciences.

The Department of Bioinformatics is dedicated to advancing the application of computational methods to cutting-edge problems in biology. The new field of Bioinformatics and Computational Biology is making critical contributions to diverse areas such as disease detection, drug design, forensics, agriculture and environmental sciences through the combination of biological analysis and high-performance computing. The Department offers a variety of undergraduate courses in Bioinformatics.

The Department of Bioinformatics engages in education and research activities in the biological sciences. Methodological and applied research activities provide students with unique opportunities to participate in quantitative research in all aspects of public health sciences, including such areas medicine, dentistry, nursing and cancer research.

BACKGROUND

The past 50 years have witnessed a scientific revolution of the first magnitude, a revolution which has transformed our knowledge of the cell from next to nothing, to nearly everything. With the complete sequence of the human and other genomes now elucidated, we will soon a have a complete parts list of the human cell-the precise location and base sequence of every gene in a reference genome. The reference allows us to rapidly characterize polymorphisms across the human population, and it also enables molecular fingerprinting technologies that permit identification of the precursors and consequences of normal and pathological changes in gene expression. These changes are driving, and coupled to, advance in monitoring and understanding the collective properties of proteins and metabolites, and their modifications under various forms of stress. The full armamentarium of tools and information is profoundly altering biomedical research and the culture of science, and it is destinedduring the next 10-20 years-stimulates an explosive growth in diagnostics, prognostics and therapeutics, profoundly altering the practice of medicine. But with this bewildering explosion of information and tools, comes subtle and complex dilemmas of choice, which must be faced collectively by society, and individually by patients and health care professionals. The need for clinically trained leaders, who understand these changes, their origin and their course, and who will play a proactive role in guiding their development, is crucial if the world's population is to benefit by these remarkable scientific advances.

MISSION

The mission of the department of bioinformatics is to apply our knowledge and expertise to the cost effective development, implementation, support and improvement of the Bioinformatics infrastructure to meet the present and future requirements of life sciences & to educate and produce graduate students in the field of bioinformatics and computational biology who are skilled & able to integrate research and education on the use of information technologies in molecular biology by developing / using bioinformatics tools.

VISION

Department of Bioinformatics wants to be a leading department of the country to provide educational background that blends biology with computer science and mathematics to develop Bioinformatics professionals and researchers with interdisciplinary approaches who are able to meet international challenges and to explore different areas of life sciences.

CURRICULUM

OF

BIOINFORMATICS BS

(Session 2015 & Onwards)

DEAPRTMENT OF BIOINFORMATICS

UNDERGRADUATE PROGRAM IN BIOINFORMATICS:

One of the first programs of its kind, the Undergraduate Program in Bioinformatics offers

Unique interdisciplinary training in the science, engineering, medicine and ethics of twenty-first century cell biology. Our curriculum focuses on the molecular biology and the physics of the cell, and emphasizes the use of advanced mathematics and computation.

The research program includes state-of-the-art topics in systems biology, computational

modeling of regulatory and metabolic networks, small-molecule and macromolecule docking, comparative genomics, protein design, genomic and proteomic biotechnology, microarray engineering and analysis, pharmacogenomics, structural biology, large-scale modeling of biological systems, RNA, computational studies of cancer and neurological disorders and functional genomics, synthetic gene networks and molecular computing and genetics.

Our dynamic environment is focused on students and helps them to gain experience in the field through academic and industrial rotations, internships, and a student seminar series. Our students regularly collaborate with faculty to produce publications.

MISSION STATEMENT OF THE PROGRAMME:

The mission of the program is to educate and prepare graduate students to understand advantages & limitations of molecular biology along with practical application of bioinformatics tools for the development of human resource in the discipline of Bioinformatics.

PROGRAMME OBJECTIVES:

The program objectives are:

- 1) To learn the scientific concepts and applications of computational methods in the biological sciences.
- 2) To adopt practical approaches to IT and computer applications in molecular biology and biotechnology with focus on major issues concerning representation and analysis of bimolecular sequences and structural information.
- 3) To learn investigative methods for research in biosciences with the help of tools of Bioinformatics.
- 4) To provide knowledge on development and application of computer software tools of bioinformatics.

OUTCOMES OF THE PROGRAMME:

The graduates of BS-Bioinformatics will be able to;

- 1. Find new and global perspectives into the organization and function of biological systems.
- 2. Develop software tools, algorithms, and databases for gene identification, protein structural prediction, clustering analysis, and data mining.
- 3. Apply the knowledge of bioinformatics to disease diagnosis and treatment.
- 4. Apply the knowledge of computer programming and languages to bioinformatics.
- 5. Research the new and novel targets for drug discovery and development; and Find the Genetic/proteomic profiling for pharmaco-genomics or personalized medicine.

REQUIREMENTS OF THE BS PROGRAMME:

BS student is required to either do a Research Project/Internship or Optional Subjects in the final year of study to fulfill the degree requirement. Candidates will be expected to develop their ideas to the point of publication.

ADMISSION REQUIREMENTS:

ELIGIBILITY

F.Sc (2nd division with at least 50% marks) in Pre-Engineering / Pre-Medical / Intermediate in Computer Science, OR Intermediate with Physics, Chemistry, statistics and Biology (deficiency courses to be completed if needed).

DURATION

• Four years programme spread over 8 semesters, two semesters per year.

COURSE AND CREDIT REQUIREMENTS:

A total of 123-148 credits are required to complete Bachelor of Science in Bioinformatics.

EVALUATION:

For uniformity in the evaluation system, NCRC recommends that the minimum CGPA required for award of degree is 2.5 out of 4.0 at undergraduate level subject to meet all requirements of the university.

SHAHEED BENAZIR BHUTTO WOMEN UNIVERSITY PESHAWAR DEAPRTMENT OF BIOINFORMATICS

FOUR-YEARS CURRICULA FOR BS BIOINFORMATICS

STRUCTURE

S.NO	Categories	No. of courses	Credit Hours
		Min- Max	Min- Max
1	Compulsory Requirement (No Choice)	8-9	24 - 28
2	General Courses to be chosen from other departments	7 – 8	24 – 27
3	Discipline Specific Foundation Courses	9 - 10	30 - 34
4	Major Courses including research project / Internship	10 - 13	33–45
5	Electives within the major	4-4	12 – 14
	TOTAL	38-44	123-148

Total numbers of Credit Hours	123-148
Duration	4 years
Semester Duration	16-18 weeks
Semesters	08
Course Load Per Semester	16-18 credit hours
Number of Courses Per Semester	4-6 (not more than 3 lab /practical courses)
nienn	Know
"nent T	hrough

LAYOUT

S.No	No Compulsory Requirements (the student has no choice)			
	8-9 Courses			
	24-28 Credit Hours			
	Subject	Credit Hours		
1.	English Comprehension	3		
2.	Islamic Studies	2		
3.	Pak Studies	2		
4.	Basic I (Basic Mathematics)	3		
5.	Basic II (Computer fundamentals)	4		
6.	Communication Skills	3		
7.	Basic Cell Biology	4		
8.	Basic Calculus	3		
9.	*Deficiency Courses			
	Total Credit Hours	24		

*Deficiency courses to be completed if needed

S.No	General Courses to be chosen from other Departments		
	7-8 Courses		
	24-27 Credit Hours		
	Subject	Credit Hours	
1.	Programming Fundamentals	4	
2.	Data Structure and Algorithms	4	
3.	Object oriented programming	4	
4.	Ethical and legal issues in Bioinformatics	2	
5.	Discrete Structures	3	
6.	Database System	4	
7.	Modeling and Simulation	3	
8.	Technical Report Writing	3	
	Total Credit Hours	27	

S.No	Discipline Specific Foundation Courses		
	9-10 Courses		
	30-34 Credit Hours		
	Subject	Credit Hours	
1.	Linear Algebra and Differential Equations	3	
2.	Essentials of Genetics	3	
3.	Biostatistics	3	
4.	Bioinformatics I	4	
5.	Bioinformatics II	4	
6.	Biochemistry I	4	
7.	Biochemistry II	4	
8.	Molecular Biology	4	
9.	Research Methodology	2	
10.	Mathematical Modelling	3	
	Total Credit Hours	34	

S.No	Major Courses including Research Project/Internship		
	9-13 Courses		
	36-45Credit Hours		
	Subject	Credit Hours	
1.	Bioinformatics Computing I	4	
2.	Genomics	3	
3.	Proteomics	3	
4.	Graphics and Visualization	4	
5.	Bioinformatics Computing II	4	
6.	Artificial Intelligence	3	
7.	Bioinformatics software Engineering	3	
8.	Special topics in Bioinformatics	3	
9.	Research Project/Internship/Optional Subjects	6	
	Total Credit Hours	33	

S.No	Elective Courses within the major			
	4 Courses			
	12-14 Credit Hours			
	(Any four of the courses may be opted from the following elective courses)			
	Subjects Credit Hours			
1.	Elective I (Microbiology & Immunology)	3		
2.	Elective II (Operating System)	4		
3.	Elective III) (Modern Languages Programming)	4		
4.	Elective IV (Molecular Phylogeny and Evolution)	3		
	Total Credit Hours	12		

S.No	List of Elective Courses
	(Any four of the courses may be opted from the following elective courses)
	Subjects
1.	Enzyme Kinetics
2.	Microarray Data Analysis
3.	Human Computer Interaction
4.	Nanotechnology
5.	Environmental Biotechnology
6.	Special Topics in Biochemistry
7.	Immuno-Informatics
8.	Microbial genomics and proteomics
9.	Protein-protein interaction
10.	Digital Image Processing
11.	Gene Mining
12.	Pattern recognition and matching
13.	Biophysics
14.	Modern programming languages
15.	Medical Image Processing
16.	Operating System
17.	Microbiology and Immunology
18.	Molecular Evolutionary Sequence Analysis
19.	Systems Biology
20.	Molecular Phylogeny and Evolution
21.	Drug Discovery and Development
22.	Computational Systems Biology
23.	Cheminformatics
24.	Biological Data Integration
25.	Whole Genome Expression Analysis and Biomarker Discovery
26.	Molecular Biology, Genetics, and Disease
27.	Structural and functional Bioinformatics
28.	R for Biomedical Informatics
29.	Bioinformatics Analysis
30.	Statistical Genetics
31.	Pharmacogenomics
32.	Advanced Computer Programming
33.	Advanced Database Systems
34.	Data Mining
35.	Bioinformatics Algorithms
36.	Bioinformatics Database Development.

Note: In addition to the above, the university can offer any elective which they feel necessary subject to the availability of resources.

SHAHEED BENAZIR BHUTTO WOMEN UNIVERSITY PESHAWAR Scheme of Studies of Pioneopmatics 4 year process

SCHEME OF STUDIES OF BIOINFORMATICS 4-YEAR PROGRAM (SESSION- 2015)

Semester I

Course Code	Course Title	Credit Hrs	
		Lectures	Lab
Hum-101	English comprehension	3	0
Hum-102	Pak Studies	2	0
MTH-101	Basic Mathematics	3	0
CS-101	Computer Fundamentals	3	1
Bio-101	Basic Cell Biology	3	1
	Total Credit Hours	14	2

Semester II

Course Code	Course Title	Credit Hrs.	
		Lectures	Lab
Hum-103	Communication skills	3	0
Hum-104	Islamic studies	2	0
CS-102	Programming Fundamentals	3	1
MTH-102	Basic Calculus	3	0
Bio-102	Biochemistry I	3	1
	Total Credit Hours	14	2

Semester III

Course Code	Course Title	C	redit Hrs
		Lectures	Lab
Hum-201	Technical Report writing	3	0
MTH-201	Linear Algebra and Differential Equation	3	0
Bio-201	Molecular Biology	3	1
Bio-202	Bio-chemistry II	3	1
BI-201	Data Structure and Algorithms	3	1
	Total Credit Hours	15	3

Semester IV

Course Code	Course Title		Credit Hrs
		Lectures	Lab
BI-202	Bioinformatics I	3	1
Bio-203	Biostatistics	2	1
MTH-202	Mathematical Modelling	3	0
Bio-204	Essential of genetics	2	1
BI-203	Object Oriented programming	3	1
	Total Credit Hours	14	3

Semester V			
Course Code	Course Title		C redit Hrs
		Lectures	Lab
CS-301	Discrete Structures	3	0
Bio-301	Research Methodology	2	0
CS-302	Data Base Management System	3	1
BI-301	Bioinformatics II	3	1
BI-302	Ethical and Legal issues in	2	0
	Bioinformatics		
Bio-302	Genomics	3	0
	Total Credit Hours	16	2

Semester VI

Course Code	Course Title		Credit Hrs
		Lectures	Lab
BI-303	Bioinformatics Computing I	3	1
BI-304	Modeling and Simulation	2	1
Bio-303	Proteomics	3	0
BI-305	Graphics and Visualization	3	1
BI-306	Elective-I (Microbiology and	3	0
	immunology)		
	Total Credit Hours	14	3

Semester VII

Course Code	Course Title		Credit Hrs
		Lectures	Lab
BI-401	Bioinformatics Computing II	3	1
BI-402	Artificial Intelligence	3	0
BI-403	Elective-II (Operating System)	3	1
BI-404	Elective-III (Modern Programming	3	1
	Languages)		
BI-689	*Research Project/Internship/Optional	0	3
	Subject		
	Total Credit Hours	12	6

Semester VIII

Course Code	Course Title	Cree	dit Hrs
		Lectures	Lab
BI-405	Bioinformatics Software Engineering	2	1
BI-406	Special Topics in Bioinformatics	3	0
BI-407	Elective-IV (Modern Phylogeny and Evolution)	3	0
BI-689	*Research Project/Internship/Optional	0	3
	Subject		
	Total Credit Hours	8	4

* Students will opt Research Project, worth of 06 credit hours **OR** Internship worth of 03 credit hours along with one optional subject **OR** Two optional subjects each worth of 03 credit hours.

The department is following the rules of HEC pertaining to the semester system, in content of courses, credit hours and examination.

Department of Bioinformatics is deviating from HEC in scheme of studies as follows.

S. No.	Deviation	Justification
1.	Revised the Course codes accordance with	Advised by the Accreditation council to revise
	accreditation.	the course codes and use the same course codes
		for the courses chosen from the other
		departments.
2.	Basic Cell Biology is shifted from 2 nd	It is basic biology subject & provides basic
	semester to 1 st Semester.	concept of biology.
3.	Essential of Genetics is shifted from 3 rd	Biochemistry I provide basics for Essential of
	semester to 4 th semester	Genetics so this should be in the next semester.
4.	Biochemistry II is shifted from 4 th semester	The said course is correlated with the courses
	to 3 semester.	of 3 th semester being taught and it should be in
		continuation with the Biochemistry I as the
5	Computational Mathematica is added as	It is basis need for the students of
5.	Computational Mathematics is added as Discipling Foundation subject in Semaster 4^{th}	R is basic need for the students of Picinformatics to develop and clear the
	Discipline Foundation subject in Semester 4	bioinformatics to develop and clear the
		students in different subjects of Bioinformatics
6	The Credit Hrs of Bioinformatics L is	As Bioinformatics I is the discipline foundation
0.	changed from $2+1$ to $3+1$	course and provided the basic knowledge of
		Bioinformatics so the course content of the
		said subject could not be covered in the HEC
		prescribed credit Hrs.
7.	Ethical & Legal Issues in Bioinformatics is	As the workload per semester i.e 18 Cr.Hrs in
	shifted from 4 th Semester to 5 th Semester.	4 th semester is exceeded due to the shuffling of
		Essential of genetics.
8.	Microbiology and Immunology is Selected	Because of the fact that students must learn and
	as Elective I in 6 th Semester.	clear the concepts of immunology with special
		reference to Bioinformatics before staring the
		Research Project in 7 th & 8 th semester as this
		subject will help them to design their Research
		Project in Drug Designing And Drug
0	Operating system is selected as Elective II in	Discovery. This subject was not included in the list of
9.	7th semester and added to the List of	allective subjects provided by HEC Because of
	Flectives	the fact that students must learn before staring
	Licenves.	the Research Project in $7^{\text{th}} \& 8^{\text{th}}$ semester as
		this subject will help them to design their
		Research Project in Bioinformatics on different
		plate forms.
10.	Modern Programming Languages System is	This subject will helps to students
	selected as Elective III in 7 th semester from	understanding of biological data bases & helps
	the list of elective subjects provided.	to learn different tools used for designing of
		biological database. This subject will also help
		them to design their Research Project in
		Bioinformatics.
11.	Modern Phylogeny & Evolution is selected	Because of the fact that students must learn and
	as Elective IV in 8^{m} semester from the list of	clear the concepts of phylogeny and evolution.
	elective subjects provided.	

DETAIL OF COURSES Semester-I

Course Name: English Comprehension	Course Code: Hum-101
Course Structure: Lectures: 3, Labs: 0	Credit Hours: 3
Course Objective:	
Emance language skins and develop critical minking.	
Course Outline	
Basics of Grammar ,Parts of speech and use of articles , Practice in unified sentence ,Analysis of phrase, clause a verbs ,Punctuation and spelling Comprehension :Answ Discussion :General topics and every-day conversation teacher keeping in view the level of students) Listening carefully selected by subject teachers Translation skills be chosen at the discretion of the teacher, Presentation s <i>Note: Extensive reading is required for vocabulary build</i>	Sentence structure, active and passive voice and sentence structure, Transitive and intransitive rers to questions on a given text (topics for discussion to be at the discretion of the :To be improved by showing documentaries/films s, Urdu to English .Paragraph writing :Topics to skills :Introduction ding

1. Functional English

a) Grammar

1. Practical English Grammar by A. J. Thomson and A. V. Martinet. Exercises 1. Third edition. Oxford University Press. 1997. ISBN 0194313492

2. Practical English Grammar by A.J. Thomson and A. V. Martinet. Exercises 2. Third edition. Oxford University Press. 1997. ISBN 0194313506

b) Writing

1. Writing. Intermediate by Marie-Christine Boutin, Suzanne Brinand and Francoise Grellet. Oxford Supplementary Skills. Fourth Impression 1993. ISBN 0 19 435405 7

c) Reading/Comprehension

1. Reading. Upper Intermediate. Brain Tomlinson and Rod Ellis. Oxford Supplementary Skills. Third Impression 1992. ISBN 0 19 453402 2.

Course Name: Pakistan Studies	Course Code: Hum-102
Course Structure: Lectures: 2, Labs: 0	Credit Hours: 2

Course Objective:

- Develop vision of historical perspective, government, politics, contemporary Pakistan, ideological background of Pakistan.
- Study the process of governance, national development, issues arising in the modern age and posing challenges to Pakistan.

Course Outline

1. **Historical Perspective** :a. Ideological rationale with special reference to Sir Syed Ahmed Khan, Allama Muhammad Iqbal and Quaid-e-Azam Muhammad Ali Jinnah. b. Factors leading to Muslim separatism c. People and Land i. Indus Civilization ii. Muslim advent iii. Location and geo-physical features. 2. **Government and Politics in Pakistan** Political and constitutional phases: a. 1947-58 b. 1958-71 c. 1971-77 d. 1977-88 e. 1988-99 f. 1999 onward 3. **Contemporary Pakistan** a. Economic institutions and issues b. Society and social structure c. Ethnicity d. Foreign policy of Pakistan and challenges e. Futuristic outlook of Pakistan

Recommended Books:

1. Burki, Shahid Javed. State & Society in Pakistan, The Macmillan Press Ltd 1980.

2. Akbar, S. Zaidi. Issue in Pakistan's Economy. Karachi: Oxford University Press, 2000.

3. S. M. Burke and Lawrence Ziring. Pakistan's Foreign policy: An Historical analysis. Karachi: Oxford University Press, 1993.

4. Mehmood, Safdar. Pakistan Political Roots & Development. Lahore, 1994.

5. Amin, Tahir. Ethno - National Movement in Pakistan, Islamabad: Institute of Policy Studies, Islamabad.

6. Afzal, M. Rafique. Political Parties in Pakistan, Vol. I, II & III. Islamabad: National Institute of Historical and cultural Research, 1998.

7. Haq, Noor ul. Making of Pakistan: The Military Perspective. Islamabad: National Commission on Historical and Cultural Research, 1993.

Course Name: Basic Mathematics	Course Code: MTH-101
Course Structure: Lectures: 3, Labs: 0	Credit Hours: 03
Prerequisites: None	
Course Objective	
1. Mathematical and statistical frameworks investigate biological processes.	are being increasingly employed to understand and
These frameworks helps in analyzing vas projects.	at amount of datasets generated from genome and related

- 3. It is thus essential to introduce basic concepts of mathematics, probability and statistics early within the Bioinformatics curriculum.
- 4. This course will enable students to understand and appreciate computational problems in proper perspective.
- 5. This course will provide a foundation for pursuing higher level courses in Computational Biology.

Course Outline: Basic concepts of Linear Algebra, Introduction to functions: Mathematical and physical meaning of functions, graphs of various functions, introduction to trigonometry, Using graphs, Graph transforms, combination and permutations, introductory concepts in Integration and derivatives, rules of integration, exponentials, Logarithms, Basic concepts related to Complex Numbers, Basic probability, Introduction to Linear Equations and Algebraic Functions, Sequences and Series, Introductory concepts of

vectors and various applications of vector calculus.

Recommended Books:

1. "Modular Math" by Heinemann. 22 Jun 2004 by Keith Pledger (Editor), Alistair Macpherson

2. "Core Mathematics" by Keith Pledger. Modular Mathematics Core Mathematics-Pearson Education (2008).

3. Elementary Linear Algebra, Howard Anton, Chris Rorres, John Wiley & Sons, 12-Apr-2010 - Mathematics - 773 pages.

4. Core Mathematics I http://www.math.kent.edu/ebooks/10021/CMI.pdf Department of Mathematical Sciences Kent State University July 23, 2010

Course Name: Computer Fundamentals	Course Code: CS-101
Course Structure: Lectures: 3, Labs: 1	Credit Hours: 4

Prerequisites: None

Course Objective:

This course focuses on introducing computing environments, general application software, basic computing hardware, operating systems, desktop publishing, Internet, software applications and tools and computer usage concepts.

Course Outline:

History, classification, computer and society, overview of numbering system with various Boolean functions, flow chart techniques, storage, programs & software, system software, application software, operating systems, office automation tools: word processing, graphics packages, databases and spreadsheets, various operating systems, current trends and research prospects. Legal and moral aspects of computing.

Lab Outline

Computation of Number system, Implementation of Boolean Functions, Basic machines organization including motherboard, memory, I/O cards, Networking devices, Use of flow charts, Introduction to office tools, overview of different browser including open source browsers, Introduction to various operating systems.

Recommended Books:

- 1. "Introduction to Computer Science", P.K Sinha 2.
- 2. "Computer Science- An Overview", Glenn Brooks.
- **3.** "Computer Applications", by Imran Saeed.
- 4. "Fundamental Concepts of Computer System", by Asiya Sultan, Amena Nudrat.

Course Name: Basic Cell Biology	Course Code: Bio-101
Course Structure: Lectures: 3, Labs: 1	Credit Hours: 4

Prerequisites: None

Course Objective

- i. The course provides the basic concept of biological science.
- ii. It emphasis on diversity of life, physical and chemical nature of living matter.
- iii. The course provides form and function of the cell and organism.

Course Outline

Basic concept of Life science. Origin of life, Branches of Biology, Introduction of Cell Biology, Prokaryotes & Eukaryotes, Viruses, Bacteria, Bacteriophages, algae, fungi, Protoplasm and Cell Wall, Cell Membrane, fluid Mosaic Model, Golgi Bodies, Endoplasmic Reticulum, Cytoplasm, Nucleus, Ribosomes, Mitochondria, Apotosis, Signal Transduction, Structure of Chromosomes, Cell Cycle

Lab Outline

- 1. Laboratory safety: Contamination and decontamination.
- 2. Study of cell structure using compound microscope.
- 3. Study of mitosis and meiosis by smear/squash method and from prepared slides.
- 4. To determine and measure cell size.
- 5. Eukaryotic and prokaryotic cell study from prepared slides.
- 6. Staining of cells- simple staining of bacterial cells.

Recommended Books:

1. Gerald Karp - Cell and molecular biology concepts and experiments - Hoboken, NJ - John Wiley - 2010 - 5th Ed

2. David M. P. Academic Press London, Methods in Cell Biology Lowery Sekivetz. Cell Structure and Function. John Willey and Sons Publication.

3. Enger, Eldon D. and Ross, Frederick C., Concepts in Biology, 10th Ed., McGraw-Hill, 2003

Semester-II

Course Name: Communication Skills	Course Code: Hum-103	
Course Structure: Lectures: 3, Labs: 0	Credit Hours: 3	
Prerequisites: None		
Course Objective: Enable the students to meet their real life communication needs.		
Course Outline		
Paragraph writing : Practice in writing a good, unified and coherent paragraph Essay writing : Introduction CV and job application : Translation skills , Urdu to English Study skills : Skimming and		

scanning, intensive and extensive, and speed reading, summary and précis writing and comprehension **Academic skills:**Letter/memo writing, minutes of meetings, use of library and internet **Presentation skills:**Personality development (emphasis on content, style and pronunciation) *Note: documentaries to be shown for discussion and review*

Recommended Books:

Communication Skills

a) Grammar

1. Practical English Grammar by A. J. Thomson and A. V. Martinet. Exercises 2. Third edition. Oxford University Press 1986. ISBN 0 19 431350 6.

b) Writing

1. Writing. Intermediate by Marie-Chrisitine Boutin, Suzanne Brinand and Francoise Grellet. Oxford Supplementary Skills. Fourth Impression 1993. ISBN 019 435405 7 Pages 45-53 (note taking).

2. Writing. Upper-Intermediate by Rob Nolasco. Oxford Supplementary Skills. Fourth Impression 1992. ISBN 0 19 435406 5 (particularly good for writing memos, introduction to presentations, descriptive and argumentative writing).

c) Reading

1. Reading. Advanced. Brian Tomlinson and Rod Ellis. Oxford Supplementary Skills. Third Impression 1991. ISBN 0 19 453403 0.

2. Reading and Study Skills by John Langan.

3. Study Skills by Riachard York.

Course Name: Islamic Studies	Course Code: Hum-104
Course Structure: Lectures: 2, Labs: 0	Credit Hours: 2

Prerequisites:

Course Objective: This course is aimed at:

1 To provide Basic information about Islamic Studies

2 To enhance understanding of the students regarding Islamic Civilization

3 To improve Students skill to perform prayers and other worships

4 To enhance the skill of the students for understanding of issues related to faith and religious life.

Course Outline

Introduction to Quranic Studies:1) Basic Concepts of Quran 2) History of Quran 3) Uloom-ul -Quran Study of Selected Text of Holly Quran 1) Verses of Surah Al-Baqra Related to Faith (Verse No-284-286) 2) Verses of Surah Al-Hujrat Related to Adab Al-Nabi (Verse No-1-18)

3) Verses of Surah Al-Mumanoon Related to Characteristics of faithful (Verse No-1-11) 4) Verses of Surah al-Furqan Related to Social Ethics (Verse No.63-77) 5) Verses of Surah Al-Inam Related to Ihkam (Verse No-152-154) **Study of Selected Text of Holly Quran** 1) Verses of Surah Al-Ihzab Related to Adab al-Nabi (Verse No.6,21,40,56,57,58.) 2) Verses of Surah Al-Hashar (18,19,20) Related to thinking, Day of Judgment 3) Verses of Surah Al-Saf Related to Tafakar,Tadabar (Verse No-1,14) **Seerat of Holy Prophet** (**S.A.W**) **I** 1) Life of Muhammad Bin Abdullah (Before Prophet Hood) 2) Life of Holy Prophet (S.A.W) in Makkah 3) Important Lessons Derived from the life of Holy Prophet in Makkah **Seerat of Holy Prophet** (**S.A.W**) **II** 1) Life of Holy Prophet (S.A.W) in Madina 2) Important Events of Life of Holy Prophet in Madina 3) Important Lessons Derived from the life of Holy Prophet in Madina **Introduction To Sunnah** 1) Basic Concepts of Hadith 2) History of Hadith 3) Kinds of Hadith 4) Uloom-ul-Hadith 5) Sunnah & Hadith 6) Legal Position of Sunnah **Selected Study from Text of Hadith**, **Introduction To Islamic Law** & Jurisprudence 3) Sources of Islamic Law & Jurisprudence 4) Nature of Differences in Islamic Law

5) Islam and Sectarianism. **Islamic Culture & Civilization** 1) Basic Concepts of Islamic Culture & Civilization 2) Historical Development of Islamic Culture & Civilization 3) Characteristics of Islamic Culture & Civilization 4) Islamic Culture & Civilization and Contemporary Issues. **Islam & Science** 1) Basic Concepts of Islam & Science 2) Contributions of Muslims in the Development of Science 3) Quranic & Science. **Islamic Economic System** 1) Basic Concepts of Islamic Economic System 2) Means of Distribution of wealth in Islamic Economics 3) Islamic Concepts of Islamic Ways of Trade & Commerce. **Political System of Islam** 1) Basic Concepts of Islamic Political System 2) Islamic Concept of Sovereignty 3) Basic Institutions of Govt. in Islam. **Islamic History** 1) Period of Khlaft-E-Rashida 2) Period of Ummayyads 3) Period of Abbasids. **Social System of Islam** 1) Basic Concepts of Islam 1) Basic Concepts of Islam 2) Elements of Family 3) Ethical Values of Islam

Recommended Books:

1) Hameed ullah Muhammad, 'Introduction to Islam.

2) Hussain Hamid Hassan, "An Introduction to the Study of Islamic Law" leaf Publication Islamabad, Pakistan.
3) Ahmad Hasan, "Principles of Islamic Jurisprudence" Islamic Research Institute, International Islamic University, Islamabad (1993).
4) H. S. Bhatia. "Studies in Islamic Law, Religion and Society" Deep & Deep.

4) H. S. Bhatia, "Studies in Islamic Law, Religion and Society" Deep & Deep Publications New Delhi (1989).

5) Dr. Muhammad Zia-ul-Haq, "Introduction to Al Sharia Al Islamia" Allama Iqbal Open University, Islamabad (2001)

Course Name: Programming Fundamentals	Course Code: CS-102	
Course Structure: Lectures: 3, Lab: 1	Credit Hours: 4	
Prerequisites: Computer Fundamentals/Basic Mathemat	ics	
Course Objective		
The course is designed to familiarize students with the basic programming skills. It emphasizes upon		
problem analysis, algorithm designing, program development and testing.		
Course Outline		
Overview of computers and programming, overview of language for e.g. C language, basics of structured		
and modular programming, basic algorithms and problem solving, development of basic algorithms,		
analyzing problem, designing solution, testing designed solution, fundamental programming constructs,		
translation of algorithms to programs, data types, control structures, functions, arrays, records, files, testing		

programs.

Lab Outline

Introduction to various programming paradigms, Coding, executing and debugging simple programs, Implementation of simple control structures, Implementation of functions, arrays, records, file input / output techniques.

Recommended Books:

1. R. P. Halpern, "C for Yourself – Learning C Using Experiments", Oxford University Press.

2. "Using Information Technology", William.

3. "Computer Organization & Architecture", William.

4. Introduction to computer programming with C/C++ by "Tariq Siddiqui"

5. C.M Aslam & T.A Quershi. Programming with C++ (Aikman Series), Lahore, Pakistan

Cours	e Name: Basic Calculus	Course Code: MTH-102
Cours	e Structure: Lectures: 3 Labs: 0	Credit Hours: 03
Cours	e Su ucture. Lectures. 5, Labs. 0	Cituit Hours. 05
Prere	quisites: None	
	•	
Cours	e Objective	
Cours		
1.	This course will familiarize students with the ba	sic principles of calculus and their application to
	problem solving	··· · · · · · · · · · · · · · · · · ·
	problem solving.	
2 To enable the students about practical applications of the course in different fields		
2. To chuble the students usout practical applications of the course in afferent fields.		
3. Make the students to polish their analytical skills.		
Course Outline: Introduction to Limits: Theorems of limits and their application to functions: Introduction		
to Continuity. Derivatives: Introduction to derivatives. Partial derivatives and their geometrical		
significance Application problems (rate of change marginal analysis) Higher derivatives: Mean value		
the new Auglice time of definitions (rate of change, marginal analysis) ingher derivatives. Mean value		
theorem, Applications of derivatives. Curvature and radius of curvature, maxima and minima of a function.		
Applic	Application partial derivatives: Integral calculus: Vector differentiation, vector integration and their	

Recommended Books:

1. Calculus by Thomas Finney, 11th Edition, Dec 26, 2010.

application. Laplace transforms, Fourier series, Z-Transform.

2. Brief Calculus and its applications by Doniel D.Benice, 5th Edition, 1997.

3. Applied Calculus by Raymond A. Barnett, 5th Edition, 08/28/1996

4. Calculus by Gerald L. Bradley, 2nd Edition, 2002.

Course Name: Biochemistry I	Course Code: Bio-102
Course Structure: Lectures: 3, Labs: 1	Credit Hours: 4
Prerequisites: None	

Course Objective: This course aims at

- i. Preparing student nurse with basic biological molecules.
- ii. To give the idea to the students to get the basic knowledge about the macromolecules along with their structure and bonding.
- iii. They will familiarize with importance of these macromolecules needed various biological processes.

Course Outline

Water, pH and buffer systems, molecules of life, nucleic acid as genetic material, bilayers and membranes, Structure and functions of carbohydrates, saccharide chemistry, mono, di and polysaccharides, structure and function of protein amino acids the building block of proteins, levels of protein structures, protein structure and folding, physiological role of proteins, role in catalysis and signaling. lipids of physiologic importance with special reference to structure, assembly and functions of plasma membrane, structure and function of informational macromolecules, enzymes.

Lab Outline

Hydrolysis of a protein and qualitative tests for amino acids; paper chromatography of amino acids; estimation of proteins by Lowry"s, dye-binding, titration curves of amino acids. Distinction between pentoses and hexoses, reducing and non-reducing sugars, acid value, saponification and iodine values of fat.

Recommended Books:

1. Nelson and Michel. 2005 LEHNINGER Principles of Biochemistry.4th Ed. Pub Freeman and Company.

2. Conn and Stumpf. 2002. Outlines of Biochemistry. John Willey and Son Pub.

3. Devlin and Thomas. 2002. Text book of Biochemistry with Clinical Correlations. 5th Ed.

4. Campbell M and Shawn F. 2003. Biochemistry. 4th Ed. Thomas Book Pub.

5.U.Satyanarayana and U.Chakrapani.2009. Biochemistry. 3rd Ed. Books and Allied (P) Ltd.

Semester-III

Course Name: Technical Report Writing	Course Code: Hum-201
Course Structure: Lectures: 3, Labs: 0	Credit Hours: 3
Prerequisites: None	
Course Objective: Enhance language skills and develop critical thinking	
Course Outline	
Presentation skills,Essay writing :Descriptive, narrative, discursive, argumentative Academic writing : How to write a proposal for research paper/term paper,How to write a research paper/term paper (emphasis on style, content, language, form, clarity, consistency) Technical Report writing , Progress report writing <i>Note: Extensive reading is required for vocabulary building</i>	

Recommended Books:

Technical Writing and Presentation Skills

- a) Essay Writing and Academic Writing
- 1. Writing. Advanced by Ron White. Oxford Supplementary Skills. Third Impression 1992. ISBN 0 19 435407 3 (particularly suitable for discursive, descriptive, argumentative and report writing).
- 2. College Writing Skills by John Langan. Mc-Graw-Hill Higher Education. 2004.
- 3. Patterns of College Writing (4th edition) by Laurie G. Kirszner and Stephen R. Mandell. St. Martin's Press.
- b) Presentation Skills

c) Reading

The Mercury Reader. A Custom Publication. Compiled by northern Illinois University. General Editors: Janice Neulib; Kathleen Shine Cain; Stephen Ruffus and Maurice Scharton. (A reader which will give students exposure to the best of twentieth century literature, without taxing the taste of engineering students).

Course Name: Linear Algebra And Differential	Course Code: MTH-201	
Equations.		
Course Structure: Lectures: 3, Labs: 0	Credit Hours: 03	
Prerequisites: None		
Course Objectives		
1. This course introduces matrices, determinants and differential equations for solving linear equations.		

- 2. To enable the students about Practical applications of the in Bio-Informatics.
- 3. The aim is to provide a practical description of the topics, tools, issues and current trends in the fields including their impact on biology and human health and medicine.
- 4. Make students to polish their analytical skills.
- 5. Have well understanding to utilize this course in this program.

Course Outline: Introduction to matrices, elementary row operations and vector spaces: Brief introduction to matrices, system of linear equations, system of non-homogeneous and homogeneous linear equation, determinants, properties of determinants of order, axiomatic definition of a determinant, double and multiple integrals. Differential equations of first order, initial and boundary conditions, methods of solution of differential equation of first order and first degree, separable equation, homogeneous equation, first order linear differential equations, Bernoulli equations, Application of first order differential equations, Higher order linear differential equations, homogeneous linear equations, solution of higher order differential equation.

Recommended Books:

- 1. Linear Algebra, David C. Lay, Pearson Addison Wesley, 3rd Edition, July 18, 2002.
- 2. Advanced Engineering Mathematics, Michael Greenberg, and 2nd Edition.

3. Advanced Engineering Mathematics, 7/e, Erwin Kreyszig. John Wiley & Sons, 10th Edition, Seventh edition, August 11, 1992.

4. Text book of mathematics for B.Sc. part1.

Course Name: Molecular Biology	Course Code: Bio-201	
Course Structure: Lectures: 3, Labs: 1	Credit Hours: 4	
Prerequisites: Biochemistry I		
Course Objectives		
1. To study classical and molecular aspects of cell.		
2. The course emphasizes about the chromosome structure, transfers of genetic information, gene expression and regulation of gene activity.		
3. The course is basis for structural biology, it aids in the simulation and modeling of DNA, RNA, and protein structures as well as molecular interactions.		
Course Outline		
Introduction to Molecular Biology. Basic concepts about DNA, RNA and proteins with special		
emphasis on nature of genetic material and its organization in viruses, prokaryotes and eukaryotes,		
DNA replication, recombination, mutations and repair, transcription, regulatory elements,		
regulation of gene expression RNA processing splicing and editing translation and post-		
translational modifications control of game expression in prokaryotes and eukaryotes. Introduction		
about plagmids and vastors		
about plasmids and vectors.		
Lab Outline		
Isolation of DNA from plant cells., Protocols for	r isolation of DNA from blood.,Protocols for	

Amplification of DNA by PCR. Gel Electrophoresis

Recommended Books:

- 1. David M. P. Academic Press London, Methods in Cell Biology Lowery Sekivetz. Cell Structure and Function. John Willey and Sons Publication.
- 2. Gerald Karp Cell and molecular biology concepts and experiments Hoboken, NJ John Wiley 2010 5th Ed.
- 3. Brown T. A. Gene Cloning and DNA Analysis: An Introduction, 6th Edition, 2010
- 4. Robert Weaver. Molecular Biology. McGraw Hill, 5th Edition, 2007.

Course Name: Biochemistry II	Course Code: Bio-202
Course Structure: Lectures: 3, Labs: 1	Credit Hours: 4
Prerequisites: Biochemistry I	•

Course Objective:

This course focuses on macromolecules and their metabolisms with emphasis on various cellular pathways.

Course Outline Study of bioenergetics, introduction to metabolic pathways, metabolism of carbohydrates, Glycolysis, Citric acid cycle, Pentose pathway, electron transport chain, and oxidative phosphorylation, lipid metabolism, β -oxidation, ketone bodies formation and biosynthesis of triglyceride, protein metabolism, oxidative deamination and decarboxylation, transamination, urea cycle and amino acids metabolism, nucleic acid metabolism, break down and synthesis of pure and pyramidine bases.

Lab Outline

Estimation of normal and abnormal constituents in urine including glucose, albumin, uric acid, chloride and phosphate, Kidney Function test, Liver function test.

Recommended Books:

1. Nelson and Michel. 2005 LEHNINGER Principles of Biochemistry.4th Ed. Pub Freeman and Company.

2. Conn and Stumpf. 2002. Outlines of Biochemistry. John Willey and Son Pub.

3. Devlin and Thomas. 2002. Text book of Biochemistry with Clinical Correlations. 5th Ed.

4.Campbell M and Shawn F. 2003. Biochemistry. 4th Ed. Thomas Book Pub.

5.U.Satyanarayana and U.Chakrapani.2009. Biochemistry. 3rd Ed. Books and Allied (P) Ltd.

Course Name: Data Structures and Algorithms	Course Code: BI-201	
Course Structure: Lectures: 3, Labs: 1	Credit Hours: 4	
Prerequisites: Programming fundamentals		
Course Objective:		

This course introduces different types of data structures and basics of algorithm analysis. It gives knowledge about implementation of these data structures and basic operations applied on them.

Course Outline:

Introduction to data structures and algorithms, definitions, overview of algorithms, basics of array data structure, basic data structure functions, store, retrieve and search, idea of big O notation, uses of arrays, concept of binary search and linear search, simple sorting techniques. Stacks and queues, overview of stacks, queues, sorting techniques, selection sort, insertion sort, bubble sort, merge sort. Comparison of sorting techniques and their applications, priority queues, store, retrieve and search functionalities in stacks and queues, linked list, double ended links, linked list efficiency, sorted list. Recursion application, Triangular Numbers, Factorials.

Lab Outline:

Implementation of Basic Arrays, storing and Searching data in Arrays, implementation of Linear Search,

implementation of Binary Search in Arrays, Using Bubble Sort, Selection Sort and Insertion on sample data, comparison study of simple sorting techniques, implementing Stacks and Queues, using priority queues for special cases, implementation of different types of Linked Lists for various applications.

Recommended Books:

- 1. Neil C. Jones, Pavel Persner, "An introduction to Bioinformatics Algorithms (Computational Molecular Biology)", 1st edition, 2004, MIT Press,.
- 2. John R. Hubbard , "Data structures with C++", Shaum's outline series., 1st edition, 2000, McGraw-Hill.
- 3. Goodrich, M.T. and Tamassia, R. and Mount, D.M. " Data Structures and Algorithms in C++", 2nd edition, 2011, John Wiley & Sons.
- 4. Robert Lafore, "Data Structures and Algorithms in Java", 2nd edition, 2002 Sams, Indianapolis, IN, USA.

Semester-IV

Course Name: Bioinformatics I	Course Code: BI-202	
Course Structure: Lectures: 3, Labs: 1	Credit Hours: 4	
Prerequisites: Computer fundamentals		
 Course Objective: The course is designed to introduce the most important and basic concepts, methods, and tools used in Bioinformatics. This course will introduce basic biological database sources, principles and methods for sequence and genome analysis. The overall aims are a. To help the students to reach rapidly the frontier of bioinformatics and be able to use the bioinformatics biological Databases. b. To convey the importance of bioinformatics for viewing the biomedical information. c. To provide hands-on experience using Biological Databases searching, retrieving, critically evaluating 		
Course Outline		
Introduction to Bioinformatics ,Historical Introduction,Goals,Scope,Applications,Limitations.Data Sequence Storage, Information retrieval and analysis, So	abases, Types of Databases, Biological Databases,	

Sequence Storage, Information retrieval and analysis, Sequence Alignment, Similarity and homology, Types of alignments, local and global alignment,. Methods of Alignment, pairwise and multiple sequence alignments, Significance of Sequence Alignment, Algorithm, Sequence Alignment Methods, dot matrix plots, dynamic programming algorithm, word (k-tuple) methods (BLAST and FASTA), substitution matrices PAM and BLOSUM, significance of scoring, gap penalties. Multiple Sequence Alignment. Uses of Multiple Sequence Alignment, Scoring Functions, Methods of Multiple Sequence Alignment, Position-Specific Scoring Matrices, Relationship of multiple sequence alignment to phylogenetic analysis, Molecular phylogenetic, Phylogenetic Basis, Phylogenetic Tree construction methods and Programs.

Lab Outline

Accessing NBCI databases, sequence databases, Genbank, EMBL, SWISS-PROT Accessing structure database PDB, SCOP and CATH, Expasy server, using online alignment tools for pair wise and multiple sequence alignment, using BLAST and FASTA, phylogenetic analysis by ClustalW.

Recommended Books:

1. Arthur M. Lesk, Introduction to Bioinformatics.4th Edition (2008).Oxford University Press.

2. Ignacimuthu SJ. Basic Bioinformatics, 2nd Edition (2005) Narosa Publishing House.

3. S.C.Rastogi, N.Mendiratta, P.Rastogi, Bioinformatics: Methods and Applications: Genomics, Proteomics and Drug Discovery. 3rd Edition (2009). PHI Learning Pvt. Ltd.

4. David Mount, Bioinformatics: Sequence and Genome analysis.2nd Edition (2004). Cold Spring Harbour Laboratories.

5. Jin Xiong, Essential Bioinformatics, (2006), Cambridge University Press.

Course Name: Bio-statistics	Course Code: Bio-203	
Course Structure: Lectures: 2, Labs: 1	Credit Hours: 3	
Prerequisites: None		
Course Objective: This course introduces the concepts of statistical methods used in analyzing biological data.		
Course Outline		
Frequency distribution and probabilities, measure of central tendencies and dispersion, standard distributions and tests of significance. Test of independence or association, method related to one and two means, variance and covariance, heritability and its uses, Bayesian statistics, analysis of variance (ANOVA), and regression analysis, use of basic software.		

Collection of data, acquisition of random samples, graphical/tabular representation of data, MS-Excel, SPSS, problems related to combining probabilities, central tendencies and dispersion, problems related to chi-square, problems of goodness of fit and independent events, verification of genetic ratios and test of association.

Recommended Books:

Latest editions of following books

- 1. Gravetter Frederick J. Statistics for Behavioral Sciences.
- 2. Mead R Curnow R. N. Statistical Methods in Agriculture and Experimental Biology. Chairman and Hall.
- 3. Mathews and Farewell: Using and understanding Medical Statistics, Krager New York.

Course Name: Computational Mathematics	Course Code: MTH-202
Course Structure: Lectures: 3, Labs: 0	Credit Hours: 03

Prerequisites: None

Course Objective

- 1. Students will work with various sorting and searching techniques.
- 2. Have will understanding to utilize this course in this program.
- 3. Make students to polish their computational skills.

Course Outline: Mathematical Preliminaries: Introduction Solution of equation in one variable. **Operators** Introduction. Types of operators. Delta, Nebla. Sigma, average. Shift. Relation of operators. Proofs of operators. Newton's forward difference formula Derivation. Construction of table for Delta. **Interpolation (equally spaced data)** Newton's backward difference formula derivation. Difference table for Nebla. **Sterling's interpolation formula, Derivation. Interpolation (unequally spaced dated).** Newton's divided difference formula for unequally spaced data. Derivation. Lagrange's formula for interpolation. Derivation. **Solution of system of linear equation.** Definition. Jacobi iterative method. Gauss sidle iterative method. SOR method. Solution of Initial value problems for ODE's by Euler's method, Taylor's method and Runge-Kutta method. **Iterative techniques in the numerical solution of system of non-linear equations.** Bisection method. The Newton Rap son method. The Secant method and Regulara Falsi method. Fixed point Iteration method. Least square approximation. Chebyshev approximation Pade's approximation. **Eigen vales and Eigen vectors.** Definition and Properties of Eigen vales and Eigen vectors Types. The power method. Exercise. Inverse power method. Applications of Eigen vales and Eigen vectors. (All methods with computer codes i.e. matlab, Mathematica, C++)

Recommended Books:

- 1. Richard L. Burden, J. Douglas Faires, Numerical Analysis, 9th Edition, 888 Pages, 2005.
- 2. Josef Stoer, Roland Bulirsch, Introduction to Numerical analysis, 3rd Edition, 2002.
- 3. Richard L. Burden, J. Douglas Faires, Numerical Methods, 10th Edition, 912 Pages, 2011.
- 4. An Introduction to Numerical Analysis (Text book for M.Sc.)
- 5. Numerical Methods For Scientific And Engineering Computation By M.K. Jain 4th Edition, 2003.

Course Name: Essential of Genetics	Course Code: Bio-204
Course Structure: Lectures: 2, Labs: 1	Credit Hours: 2+1
Prerequisites: Biochemistry I	
Course Objective	
1. This course provides the basic princip molecular techniques used in gene ana	les of inheritance. Students will gain experience in variety of lysis.
2. Course will help develop tools aid in the comparison of genetic and genomic data and more generally in the understanding of evolutionary aspects of molecular biology	

Course Outline:

Genetics introduction, heredity and variations, Mendelian and non-Mendelian inheritance, chromosomal structure, chromosomal theory of heredity, multiple allelic, linkage and gene mapping, polygenic inheritance, epitasis, epigenetics, penetrance and expressivity, chromosomal aberrations.

Lab Outline

Determine ABO blood typing.Problems solving related to Mendelian inheritance.Problems solving in ABO blood typing in Humans.

Recommended Books:

- **1.** James M. and David V. 1997. The Book of Genetics. 2nd Ed.Ser.ELDs Pub.
- **2.** Tortora et al. 2001. Microbiology an introduction. 7 Ed. Benjanium Lumming.
- 3. William S. Klug and Michael R. Cummings V.2001. Concepts of Genetics. 4 Ed.

Course Name: Object Oriented Programming	Course Code: BI-203	
Course Structure: Lectures: 3, Lab: 1	Credit Hours: 4	
Prerequisites: Programming Fundamentals		
Course Objective		
The course focuses on object-oriented concepts, analysis and software development.		

Course Outline

Concept of object oriented programming (OOP), characteristics of OOP, polymorphism, encapsulation, data hiding. Java introduction, byte code, architectural neutral language, simple programs, compiling and execution, dynamic initializing, scope and lifetime of variables, type conversion and casting, the type promotion rules, arrays, string data type, arithmetic operators, Bit wise operators, relational operators, boolean logical operators. Introducing classes, declaring objects, object reference, control access, specified, public, private, static, data member and methods. Creating packages, constructors, function overloading, constructor overloading, reference, members, inheritance, polymorphism, dynamic method binding, inner class definitions, concatenating strings, string constructors, string comparing, string methods, string concatenating, string classes, string methods, Friend function, virtual functions, inline functions, Abstract classes, Interfaces.

Lab Outline

Programs implementation according to the Course outlines.

Recommended Books:

1. Complete Reference Java by "Herbert Schildt".

2. Object Oriented Programming by "Robert Lafore", JAVA How To Program Third edition by Deitel & Deitel.

3. Cay S. Horstmann,: 0, Java For Everyone, 978-1-1180-6331-6

Semester-V

Course Name: Discrete structures	Course Code: CS-301	
Course Structure: Lectures: 3, Labs: 0	Credit Hours: 3	
Prerequisites: Basic Calculus		
Course Objective		
This course introduces the fundamentals of discrete mathematics as they apply to Computer Science, focusing on providing a solid theoretical foundation.		
Course Outline: Logic and proofs, direct proofs, proof by contradiction. Sets, combinatorics, sequences, formal logic, prepositional and predicate calculus, methods of proof, mathematical induction and recursion, loop invariants, relations and functions, Pigeonhole principle, trees and graphs, elementary number theory, optimization and matching. Fundamental structures, functions, relations (more specifically recursions), cardinality and countability, probabilistic methods.		
Recommended Books:		
1. Kenneth H. Rosen, <i>Discrete Mathematics and Its Applications</i> , 6th edition, 2006, McGraw Hill Book Co.		
2. Richard Johnsonbaugh, Discrete Mathematics, 7th edition, 2008, Prentice Hall Publishers.		
3. Kolman, Busby & Ross, <i>Discrete Mathematical Structures</i> , 4th edition, 2000, Prentice-Hall Publishers.		

4. Ralph P. Grimaldi and Rose-Hulman. *Discrete and Combinatorial Mathematics; an Applied Introduction*, 1985, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Course Name: Research Methodology	Course Code: Bio-301	
Course Structure: Lectures: 2, Labs: 0	Credit Hours: 2	
Prerequisites: Biochemistry		
Course Objective:		

The basic concept of this course is to provide knowledge about how to design a research project and present it a professional manner.

Course Outline

The main objectives of this course are: to understand the concepts of basic and applied research and their usefulness, formulation of research objectives, Communication in biosciences, Sources of Scientific Information, Searching for Scientific information,Library Technology, Electronic Searches, Primary Literature Searches, Primary Literature,Reading scientific papers, Research projects: applying the scientific method, types of projects and ideas for research,Critical analysis of research results, biostatistical methods used in data analysis Presenting Information: How to communicate outcomes and conclusions, Presenting figures and tables Presenting results, Writing reports.use of reference manager software (Endnote).

Recommended Books:

Latest texts related to research methodology.

Course Name: Database Management Systems	Course Code: CS-302
Course Structure: Lectures: 3, Labs: 1	Credit Hours: 4

Prerequisites: None

Course Objective:

The course aims to introduce basic database concepts, different data models, storage and retrieval techniques, database design techniques.

Course Outline:

Basic database concepts, conceptual modeling, hierarchical, network and relational data models, relational theory and languages, databases design, database security and integrity, query languages, relational calculus, relational algebra, SQL, introduction to query processing and optimization, introduction to concurrency and recovery, front-end and back-end databases.

Lab Outline:

Structured Query Language commands, creating and populating tables, design of simple databases, database normalization techniques, query optimization, indexing techniques, partial and full recovery techniques, developing GUI techniques, implementation of database security mechanisms.

Recommended Books:

- 1. Jeffrey A. Hoffer, V. Ramesh, Heikki Topi. MODERN DATABASE MANAGEMENT, 11th Edition, 2012, Prentice Hall.
- 2. Connolly,R., Begg,P. Database Systems: A Practical Approach to Design, Implementation and Management, 5th Edition, 2009, Addison-Wesley Pub. Co.
- 3. Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems. 6th Edition, 2010, Pearson.
- 4. C.J.Date, An Introduction to Database System, 8th Edition, 2004, Addison-Wesley.

Course Name: Bioinformatics II	Course Code: BI-301
Course Structure: Lectures: 3, Labs: 1	Credit Hours: 4

Prerequisites: Bioinformatics I

Course Objective: This course is design to

a) to learn and locate various analysis tools for amino acid & nucleotide sequences & set the attributes for each tool and process sequence data & How RNA sequence relates to structure.

b) How protein sequence information can be used for genome annotation, gene prediction process, protein folding, structure and function prediction.

c) learn and locate various 2D & 3D protein modeling tools & quantitative methods for predicting 3D structures and gene expression.

d) develop hands-on experiences using software, critically evaluating results and interpreting their biological significance with the bioinformatics methods through guided exercises

Course Outline

Introduction to gene prediction, Basis of gene Prediction, Gene Prediction in prokaryotes and eukaryotes, gene Prediction Methods, ORF, TFBS, codon usage table, EST and SNP databases, primer designing, restriction enzyme databases, RNA structure prediction, computational secondary and tertiary protein structure prediction methods, hydrogen bonding, PTMs of proteins, Chou Fasman, PHD and PSIPred, neural network, X-ray crystallography, NMR, *ab initio*, threading and homology modeling, structure prediction evaluation, protein fold identification using Pfam and other tools.

Lab Outline

Online tools: Gene finder, ORF finder, EST database, SNP data, Primer 3, protein structure prediction using online server, protein structure visualizing using visualization programs, Secondary structure prediction, using pfam database.

Recommended Books:

1. Ignacimuthu SJ. Basic Bioinformatics, 2nd Edition (2005) Narosa Publishing House.

2. S.C.Rastogi, N.Mendiratta, P.Rastogi, Bioinformatics: Methods and Applications: Genomics, Proteomics and Drug Discovery. 3rd Edition (2009). PHI Learning Pvt. Ltd.

3. Jin Xiong, Essential Bioinformatics, (2006), Cambridge University Press

4. David Mount, Bioinformatics: Sequence and Genome analysis.2nd Edition (2004). Cold Spring Harbour Laboratories.

5.Des.Higgins,Willie Taylor, Bioinformatics Sequence,Structure & Databanks. (2002) Oxfoard University Press.

Course Name: Ethical & Legal Issues in Bioinformatics	Course Code: BI-302
Course Structure: Lectures: 2, Labs: 0	Credit Hours: 2
Prerequisites: None	

Course Objective: This course introduces the ethical and legal aspects related to bioinformatics practices and products.

Course Outline

Social context of computing and biology, Intellectual property, Privacy and civil liberties, Economic issues in bioinformatics, monopolies and their economic implications, effect of skilled labor supply and demand on the quality of bioinformatics products, pricing strategies in the bioinformatics domain, differences in access to bioinformatics resources and the possible effects thereof. Health, psychological and legal issues in GMOs. Biosafety and Bio-security issues.

Recommended Books:

Latest editions of following books

1. Legal and Ethical Issues in Acquisitions. Edited by Katina Strauch. A Bruce Strauch.

2. Computer Ethics: Cautionary Tales and Ethical Dilemmas in Computing By Tom Forester, Perry Morrison.

3. Public Management Information Systems. By Bruce A Rocheleau.

4. Security in Computing. By Willis H. Ware, Charles P. Pfleeger, Shari Lawrence Pfleeger.

5. Computer Ethics: Cautionary Tales and Ethical Dilemmas in Computing By Tom Forester, Perry Morrison.

Course Name: Genomics	Course Code: Bio-302
Course Structure: Lectures: 3, Labs: 1	Credit Hours: 4

Prerequisites: Biochemistry I/Molecular Biology

Course Objective:

Students will be trained to grasp knowledge about structural and functional genomics and their applications.

Course Outline Introduction to genomics, genome anatomy, gene expression, genome evolution, genome mapping, DNA markers, linkage analysis. QTL, mutations, Human Genome Project, Microarray, Genevestigator, Non- coding RNAs and their regulation, siRNA.

Recommended Books:

- **1. Biochemistry.** 3rd Ed. U.Satyanarayana and U.Chakrapani.2009.. Books and Allied (P) Ltd.
- 2. Analysis of Genes & Genomes. Richard J.Reece. 2004 John Wiley & Sons, Ltd.
- **3. BIOINFORMATICS Methods & Applications** By S.c Rastogi, N.Mendiratta.Prentic-Hall of India Private Limited.
- 4. Basic Bioinformatics By S.Ignacimuthu, S.j. Narosa Publishing House.

Semester-VI

Course Name: Bioinformatics Computing-I	Course Code: BI-303
Course Structure: Lectures: 3, Labs: 1	Credit Hours: 4

Prerequisites: Programming Fundamentals

Course Objective:

This course aims to introduce the concepts of data representation, searching, security and ownership. Develop techniques for pattern matching, recognition and their applications in bioinformatics.

Course Outline:

Databases: Data management, networks, geographical scope, communications models, transmissions technology, protocols, bandwidth, topology, hardware, contents, security, ownership, implementation, Search engines. Search process, search engine technology, searching and information theory, computational methods, knowledge management, data, sequence and structure visualization, data mining methods and technology, pattern recognition and discovery, pattern matching, dot matrix analysis, substitution matrices, dynamic programming, Scripting.

Lab Outline:

Simulation of various bioinformatics entities, application of various bioinformatics methods, scripting languages python, perl and PHP, and their applications in Bioinformatics.

Recommended Books:

- 1. "Bioinformatics Computing" Bryan Borgeron, Pearson Education (US), 19 November 2002.
- 2. "Methods in Biotechnology and Bioengineering", Vyas S.P. and Kohli D.V.2002.
- **3.** *Bioinformatics Methods and Techniques*. Banatao, R. Stanford University, Stanford Center for Professional Development, 2002.
- **4.** "What's Next in High-Performance Computing?" Bell, G. and J. Gray. *Communications of the ACM*.2002.
- 5. Essentials of Knowledge Management. Bergeron, B. New York: John Wiley & Sons, 2003.

Course Name: Modeling & Simulation	Course Code: BI-304
Course Structure: Lectures: 2, Lab: 1	Credit Hours: 3
Prerequisites: None	
Course Objective	

This course emphasizes the development of modeling and simulation concepts and analysis skills necessary to design, program, implement, and use computers.

Course Outline

Baics, Performance modeling and evaluation, bench marking, performance evaluation of high parallel systems architecture, application of performance evaluation, measurement techniques, hardware monitoring, software monitoring, hybrid monitoring, fundamentals of queuing models, structure and performance parameters, operational analysis of queuing models, general features of queuing models, birth and death processes, m/m/i and m/g/1 systems, dependability modeling, analysis of reliable, available and 30 high assurance systems, fault-tolerant techniques, software reliability modeling, adaptive modeling, agent based modeling.

Lab Outline

Introduction to modeling techniques using simulation tools like MATLAB. Bioinformatics toolbox for various performance modeling, evaluation, analysis and study various queuing techniques.

Recommended Books:

1. Simulation Techniques for Discrete Event Systems By "I. Mitran", Cambridge Computer Science text

14, Published by University Press, Cambridge, 1982.

2. Discrete Event system simulation/5th edition by "Banks,Jerry", Pearson Prentice Hall, 2009

3.Simulation modeling and analysis/3rd edition by "Law,A.M,Kelton and W.David, Mcgraw Hill,2000.

Course Name: Proteomics	Course Code: Bio-303	
Course Structure: Lectures: 3, Labs: 0	Credit Hours: 3	
Prerequisites: Biochemistry I /Molecular Biology		
Course Objective		
This course intends to provide basic concepts regarding	proteome and	
protein chemistry with special focus on protein identification techniques.		
After taking this module, students should:		
	1.01	
i) Be familiar with different types of sample preparation workflows.		
ii) Be able to identify advantages and limitations of the major types of mass spectrometers and ion		
sources, and appropriately select instrumentation that will provide useful information for a		
given proteomics application.		
Course Outline		
Introduction to proteomics and protein chemistry, Proteomics in relation to genomics and bioinformatics,		
Techniques for identification and separation of proteins. bioinformatics tools for analysis of proteomics		
data proteomics databases NMR and X-ray crystallography 1D-SDS-PAGE 2D-SDS PAGE Cel		
autu, protosnico autoasos, tunit and A tay crystanography, 1D 5D5 17(6E, 2D-5D5 17(6E, 60)		
electrophoresis, Detection and quantitation of proteins in gels. Basics of mass spectrometry. Malditof and		

ESI, and their application in proteomics. Tandem MS/MS spectrometry. Peptide sequencing by tandem

mass spectrometry, Chromatography and its types, Microarrays, Proteomics of protein modification, Interactomes, Applications and future development of proteomics

Recommended Books:

1. Introduction to Proteomics: Principles and Applications by Nawin C. Mishra, Günter Blobel ISBN: 978-0-471-75402-2, **2011 edition**

2. HEYER, L. -- CAMPBELL, A. *Discovering Genomics, Proteomics and Bioinformatics*. USA: Cold Spring Harbor Lab. Press, 2006. 352 p. ISBN 0-8053-4722-4

3. Rastogi *et al.* Bioinformatics methods and applications. Genomics, Proteomics and Drug discovery.

4. *Mass Spectrometry - A Textbook*, 1st Ed., Springer-Verlag: Berlin, Heidelberg, 2004. ISBN-10 3-540-40739-1; ISBN-13 978-3-540-40739-3.

E. de Hoffmann and V. Stroobant

5. Principles of Proteomics Advanced Texts by Richard Twyman, Publisher Garland Science, 2004, ISBN 0203507398, 9780203507391

Course Name: Graphics and Visualization	Course Code: BI-305
Course Structure: Lectures: 3, Labs: 1	Credit Hours: 4

Prerequisites: Programming Fundamentals

Course Objective

This course introduces algorithms and tools for data visualization and its applications to data manipulation.

Course Outline:

Graphics hardware, fundamental algorithms, applications of graphics, interactive graphics programming, graph plotting, windows, clipping and segmentation, programming raster display systems, panning and zooming, Raster algorithms and software, scan-converting lines, characters and circles, region filling, two and three dimensional imaging geometry and transformations, curve and surface design, rendering, shading, colour, and animation.

Lab Outline:

Line drawing techniques, clipping effects, 2D and 3D representations and transformations using open GL, development of graphical user interface with various blocks and modules, elliptical and curve creation exercises.

Recommended Books:

- 1. Computer Graphics (C Version), by Donald Hearn and M. Pauline Baker (Prentice Hall, 1997)
- 2. Graphics & Visualization Principles and Algorithms by Theoharis, Georgios Papaioannou.
- 3. Matthew Ward, Georges Grinstein, Daniel Keim. Interactive Data Visualization: Foundations, Techniques, and Applications. (May, 2010).

Course Name: ELECTIVE I (Microbiology and immunology)	Course Code: BI-306
Course Structure: Lectures: 3, Labs: 0	Credit Hours:3
Prerequisites: None	

Course Outlines: The course is chosen from the list of elective and course content will be design by the subject teacher at the time of teaching according to the need and requirements of discipline.

Semester-VII

Course Name: Bioinformatics Computing II	Course Code: BI-401		
Course Structure: Lectures: 3, Labs: 1	Credit Hours: 4		
Prerequisites: Bioinformatics Computing I			
Course Objective			
This course introduces advanced concepts of artificial i for solving bioinformatics problems.	ntelligence, neural networks and pattern recognition		
Course Outline: This course emphasized on cellular, tissue, organ and system modeling, simulation, analysis using an object oriented programming languages, Bio-inspired computation, evolutionary algorithms, Swarm Intelligence, neural networks, application of neural networks to Bioinformatics, neural computation, approximate matching algorithm and their applications for DNA Matching.			
Lab Outline: Simulation and application of neural network related techniques for bioinformatics, implementation of approximate matching algorithms, DNA matching algorithms and applications.			
Recommended Books:			
 "Bioinformatics Concepts, Skills and Applications" Namita M, CSB Publishers. "Bioinformatics Managing Scientific Data", Lacroix Zor, Morgan Kauffmann Publishers. 			

Course Name: Artificial Intelligence	Course Code: BI-402		
Course Structure: Lectures: 3, Labs: 0	Credit Hours: 3		
Prerequisites: Programming Fundamentals			
Course Objective			
This course introduces the techniques of artificial intelligence for solving advanced problems using computers.			

Course Outline:

Introduction to artificial intelligence, applications, problem solving, classical approach, generate and test, problem presentation, searching, tree and graph terminology, searching, branch and bound, improvements in branch and bound, common lisp. AI classical systems: general problem solver, rules, simple search, means-ends analysis. ELIZA, pattern matching, rule based translators, Knowledge Representation: natural language, rules, productions, predicate logic, semantic networks, frames, objects, scripts, hill climbing, min-max search, A* search, symbolic mathematics, solving algebra problems, Logic Programming: Resolution, unification, horn-clause logic, prolog.

Recommended Books:

- 1. Kumar, E., Artificial Intelligence, 2008, I.K. International Publishing House Pvt. Limited.
- 2. Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd edition, 2009, Pearson.
- 3. Spivey, M., An Introduction to Logic Programming Through Prolog, 2002, Prentice Hall International Series in Computer Science.

Course Name: ELECTIVE II (Operating System)	Course Code: BI-403		
Course Structure: Lectures: 3, Labs: 1	Credit Hours:4		
Prerequisites: None			
Course Outlines: The course is chosen from the list of elective and course content will be design by the subject teacher at the time of teaching according to the need and requirements of discipline.			

Course Name: ELECTIVE III (Modern Programming Languages)	Course Code: BI-404	
Course Structure: Lectures: 3, Labs: 1	Credit Hours:4	
Prerequisites: None		
Course Outlines: The course is chosen from the list of elective and course content will be design by the subject teacher at the time of teaching according to the need and requirements of discipline.		
	1	

Course Name: Research Project/Internship/Optional Subject	Course Code: BI-689		
Course Structure: Lectures: 0, Labs: 3	Credit Hours:3		
Prerequisites: None			
Course Outlines: The student can opt for research project/Internship/Optional subjects from the list of elective. The research project will be supervised and directed by a full time faculty member of the department.			

Semester-VIII

Course Name: Bioinformatics Software	Course Code: BI-405	
Engineering		
Course Structure: Lectures: 2, Labs: 1	Credit Hours: 3	
Prerequisites: None		
Course Objective:		
This course introduces the software engineering princip	ples and methodologies with the goal of developing	
bioinformatics applications		
cronnonnanco approvinono		
Course Outline:		
Software development methodology, waterfall model, i	terative model, rapid application development,	
prototyping, software life cycle. Development of software	are projects for bioinformatics problems, overview	
of software architecture, web based applications archite	ecture, developing front end applications.	
Lab Outline:		
Introduction to software development techniques impl	ementation of various software models using simple	
asso studios introduction to UTML VML use of front	and application tool	
Case studies, infoduction to ITTWL, AWL, use of from		
Kecommended Books:	· · · · · · · · · · · · · · · · · · ·	
1.1an Sommerville, Software Engineering, Eighth Edi	tion, Addison-Wesley, 2001	
2.Roger S. Pressman, Software Engineering: A Practitioner's Approach, Seventh Edition.McGraw-Hill,		
2001		
3.Bioinformatics software engineering by Paul Westo	n.	
4.Namita M . 2003. Bioinformatics concepts, skills and applications.CSB publishers and distributors.		

Course Name: Special Topics in Bioinformatics	Course Code: BI-406
Course Structure: Lectures: 3, Labs: 0	Credit Hours: 3
Prerequisites: Bioinformatics I	

Course Objective:

This course intends to introduce recent advances in bioinformatics

Course Outline:

The course will review the major advances in Bioinformatics. Students are required to make presentation of the selected topics as determined by the faculty members / Coordinator conducting Bioinformatics Programme.

Recommended Books:

- 1. Namita M. Bioinformatics concepts, skills and applications, CSB publishers and distributors.
- 2. Lacroix Zor. Bioinformatics managing scientific data, Morgan Kaufmann publishers.
- 3. Higgs Paul. G. Bioinformatics and Molecular evolution, Black well Publishing.
- 4. Schulze. S. Kremer. Advances in molecular Bioinformatics, Netherland Printing.

Course Name: ELECTIVE IV (Modern Phylogeny and Evolution)	Course Code: BI-407		
Course Structure: Lectures: 3, Labs: 0	Credit Hours:3		
Prerequisites: None	<u>.</u>		
Course Outlines: The course is chosen from the list of elective and course content will be design by the subject teacher at the time of teaching according to the need and requirements of discipline.			

Course Name: Research Project/Internship/Optional Subject	Course Code: BI-689	
Course Structure: Lectures: 0, Labs: 3	Credit Hours:3	
Prerequisites: None		
Course Outlines: The student can opt for research project/Internship/Optional subjects from the list of elective. The research project will be supervised and directed by a full time faculty member of the department.		

RECOMMENDED BOOKS:

The latest editions of:

Cell and Molecular Biology: Concepts and Experiments Gerald Karp John Wiley and Sons Introduction to Computational Molecular Biology Setubal, Meidanis Brooks/Cole Principles and Techniques of Biochemistry and Molecular Biology Keith Wilson, John Walker Cambridge University Press Instant Notes: Biochemistry B D Hames Viva Books Pvt. Ltd. Basics of Theoretical and Computational Chemistry BM Rode John Willey and Sons Instant Notes: Genetics P C Winter Viva Books Pvt. Ltd.

Instant Notes: Molecular Biology P C Turner Viva Books Pvt. Ltd.

Molecular Cloning: A laboratory manual Sambrook Cold Dpring Harbor, Laboratory Press.

Instant Notes: Bioinformatics David R. Westhead, J. Howard Parish and Richard M. Twyman Viva Books Pvt. Ltd.

Bioinformatics for Dummies Jean-Michel Claverie, Cedric Notredame Wiley Publishing, Inc.

Essential Bioinformatics Jin Xiong Cambridge University Press.

Bioinformatics Bal Tata McGraw-Hill.

Bioinformatics Andrzej Polański, Marek Kimmel Springer.

Bioinformatics: An Introduction Jeremy Ramsden Springer.

Bioinformatics: A Concept-based Introduction Venkatarajan Subramanian Mathura, Pandjassarame Kangueane Springer.

Bioinformatics: Tools and Applications David Edwards, Jason Eric Stajich, David Hansen Springer. **Bioinformatics: Principles and Basic Internet Applications** Hassan A. Sadek Trafford Publishing, Canada.

Bioinformatics: Applications in Life and Environmental Sciences M. H. Fulekar Springer.

Bioinformatics: A Practical Approach Shui Qing Ye Chapman & Hall / CRC.

Applied Bioinformatics: An Introduction Paul M. Selzer, Richard J. Marhöfer, Andreas Rohwer Springer.

Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins Andreas D. Baxevanis, B. F. Francis Ouellette John Wiley and Sons, USA.

Bioinformatics: a Swiss perspective Ron D. Appel, Ernest Feytmans World Scientific, Singapore.

Bioinformatics: Genomics and Post-genomics Frédéric Dardel, François Képès, Translated by Noah Hardy John Wiley and Sons, France.

Bioinformatics: Methods and Applications: Genomics, Proteomics and Drug Discovery S. C. Rastogi, Namita Mendiratta, Parag Rastogi PHI Learning Pvt. Ltd.

Bioinformatics and drug discovery Richard S. Larson Humana Press.

Computational molecular biology: an algorithmic approach Pavel Pevzner MIT Press.

Bioinformatics algorithms: techniques and applications Ion Măndoiu, Alexander Zelikovsky Wiley-Interscience.

Bioinformatics: problem solving paradigms Volker Sperschneider, Jana Sperschneider, Lena Scheubert Springer.

Parallel computing for bioinformatics and computational biology Zomaya A. Y. John Wiley & Sons, Inc.

Research and trends in data mining technologies and applications David Taniar Idea Group Inc (IGI). **Machine learning in bioinformatics** Yan-Qing Zhang, Jagath Chandana Rajapakse John Wiley and Sons. **Computational Intelligence in Bioinformatics** Árpád Kelemen, Ajith Abraham, Yuehui Chen Springer.

Bioinformatics and the Cell: Modern Computational Approaches in Genomics, Proteomics and Transcriptomics Xuhua Xia Springer.

Bioinformatics for Dummies 2nd Edition Jean-Michel Claverie and Cerdric Notredame

Bioinformatics-Sequence and Genome Analysis David W. Mount.

Introduction to Bioinformatics T K Attwood and D J Parry-Smith.

Bioinformatics-Gene, Proteins and Computers C. A. Orengo, D. T. Jones and J. M. Thornton.

CURRICULUM

OF

BIOINFORMATICS MS

(Session 2015 Onwards)

MASTER OF SCIENCE (MS) IN BIOINFORMATICS

Introduction:

The purpose of MS degree programme in bioinformatics is to provide the students with an advanced knowledge and practices that will train them to decipher the biological processes with the help of computational tools. Exponential growth and complexity of biological data can be translated effectively into knowledge by the use of computer based approaches.

General objectives

The enormous influx of biological data can only be handled with better and faster computational approaches together with advanced knowledge in functional genomics and proteomics. Advanced concepts, structures, algorithms and tools are required for effective processing and analysis. Specialized courses in molecular biology, bioinformatics and computation are needed to achieve these objectives.

Learning Outcomes

After completion of MS program in bioinformatics, the graduates will be able to

- Answer fundamental questions about molecular evolution, biological functions and control of biological systems.
- Use bioinformatics skills predicting functions from structures, networks, complexes, transcriptome and proteome data.
- Design novel genes/proteins and small molecules with specific functions.
- Develop advanced computational applications related to bioinformatics

Admission Requirements:

Eligibility:

1. BS in Bioinformatics/Biological Sciences/Computer sciences/ Biotechnology or equivalent in relevant disciplines (deficiency courses to be completed if needed).

- 2. 2nd Division or GPA 2.50 or above.
- 3. Subject GRE/NTS or in-house written test.
- 4. Interview.

Duration:

2 years (course work may be completed in two semesters and one year for research work).

Total Credit Hrs:

30 (24 credit hours course work + 6 credit hours thesis).

Scheme of Studies for Ms Programme In Bioinformatics

Course Code	Semester 1 (Credit Hours)		Course Code	Semester 2 (Credit Hours)	
	Courses	Credit	-	Courses	Credit Hours
		Hours			
BI-601	Advance Bioinformatics	3	BI-605	Elective II (System	3
				Biology)	
BI-602	Advance Molecular	3	BI-606	Elective III (Statistical	3
	Biology			Methods for Computational	
				Biology)	
BI-603	Information Processing	3	BI-607	Advance Computing	3
				Approaches	
BI-604	Elective I (Designed	3	BI-608	Elective IV (Bioinformatics	3
	Analysis Of Algorithms)			Scripting and	
				Programming)	
,	Total Credit Hours 12 Total Credit Hours		12		
	Semester 3 & 4				
(Credit Hours)					
	Research/Thesis		6		
BI-650	Grand Total Credit Hours		30		

DETAIL OF COURSES

SEMESTER-I

Course Name: Advance Bioinformatics	Course Code: BI-601	
Course Structure: Lectures: 3, Labs: 0	Credit Hours: 3	
Prerequisites: None		
Course Objective: The objective of this course is to train students to develop methods and understanding for integration and analysis of biological data.		
Course Outline: Functional genomics, comparative genomics, DNA microarray, computer aided drug designing (ligand and receptor based), molecular docking, protein-protein interaction network and databases, molecular dynamics simulation, biological networks, transcriptome, metabolomics		

Recommended Books:

1. Schulze S. Kremer. Latest Ed. Advances in Molecular Bioinformatics. Netherland Printing.

2. S.C.Rastogi, N.Mendiratta, P.Rastogi, Bioinformatics: Methods and Applications: Genomics, Proteomics and Drug Discovery. 3rd Edition (2009). PHI Learning Pvt. Ltd.

3. Jin Xiong, Essential Bioinformatics,(2006), Cambridge University Press

4. David Mount, Bioinformatics: Sequence and Genome analysis.2nd Edition (2004). Cold Spring Harbour Laboratories.

5.Des.Higgins,Willie Taylor, Bioinformatics Sequence,Structure & Databanks. (2002) Oxfoard University Press.

Course Name: Advanced Molecular Biology	Course Code: BI-602	
Course Structure: Lectures: 3, Labs: 0	Credit Hours: 3	
Prerequisites: None		
Course Objective: The students will learn most recent advances in molecular biology and molecular cloning techniques.		
Course Outline: Molecular nature of gene' methods of molecular biology; transcription in prokaryotes and eukaryotes; post transcriptional events; translation; DNA replication, recombination and transposition; homologous; homologous recombination. Genomics and proteomics etc.		
 Recommended Books: 1. Wisden and Richered. Advanced Molecular Biology. Viva Book Private Ltd. 2. Benjamin Lewin: GENES. Pearson/Prentice Hall. 3. Robert Weaver. Molecular Biology, McGraw Hill. 		

Course Name: Information Processing	Course Code: BI-603	
Course Structure: Lectures: 3, Labs: 0	Credit Hours: 3	
Prerequisites: None		
Course Objective:		
To introduce the principles of data analysis, association, classification, matching and their		
applications to bioinformatics.		

Course Outline:

Classification, Bayesian networks, nearest neighbour and k-means clustering, decision tree learning, clustering and data/dimensionality reduction, sampling, feature selection and feature transformation approaches, machine learning for user modeling, data warehousing, advanced query processing, data mining, association analysis, sequence mining, introduction to web mining, content, structure and usage mining.

Recommended Books:

1. Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze.

- 2. "Introduction to Information Retrieval", Cambridge University Press.
- 3. Ricardo Baeza-Yates and Berthier Ribeiro-Neto, "Modern Information Retrieval" ACM Press.

4. David A. Grossman and Ophir Frieder, "Information Retrieval: Algorithms and Heuristics", Springer.

Course Name: ELECTIVE I (Design & Analysis of Algorithms)	Course Code: BI-604
Course Structure: Lectures: 3, Labs: 0	Credit Hours:3
Prerequisites: None	
Course Outlines: The course is chosen from the list of elective and course content will be design by the subject teacher at the time of teaching according to the need and requirements of discipline.	

SEMESTER-II

Course Name: ELECTIVE II (System Biology)	Course Code: BI-605	
Course Structure: Lectures: 3, Labs: 0	Credit Hours:3	
Prerequisites: None		
Course Outlines: The course is chosen from the list of elective and course content will be design by the subject teacher at the time of teaching according to the need and requirements of discipline.		

Course Name: ELECTIVE III (Statistical Methods for Computational Biology)	Course Code: BI-606
Course Structure: Lectures: 3, Labs: 0	Credit Hours:3
Prerequisites: None	

Course Outlines: The course is chosen from the list of elective and course content will be design by the subject teacher at the time of teaching according to the need and requirements of discipline.

Course Name: Advance Computing Approaches	Course Code: BI-607	
Course Structure: Lectures: 3, Labs: 0	Credit Hours: 3	
Prerequisites: None		
Course Objective:		
This course provides knowledge on advanced principles and applications of biological data		
analysis and processing.		
Course Outline:		
Introduction to microarray experiments: principles and experimental design, biomedical image		
analysis (2D gel, DNA and protein chips), advanced analysis of microarray data, exploratory data		
analysis and visualization, cluster analysis: hierarchical clustering, k-means, gene shaving,		
correspondence analysis, multi-dimensional scaling, neural networks, unsupervised and supervised		
learning: discriminant analysis, error-rate concepts, tree-based methods, genetic algorithms,		
applications to genetic networks, genetic modeling.		
Recommended Books:		
1. Image processing using Matlab, RC Gonzales.		
2. Pattern classification by Huda & Hart.		
3. Algorithms for Image Processing & Computer Vision, J.R. Parker.		

Course Name: ELECTIVE IV (Bioinformatics Scripting & Programming)	Course Code: BI-608
Course Structure: Lectures: 3, Labs: 0	Credit Hours:3
Prerequisites: None	
Course Outlines: The course is chosen from the list of elective and course content will be design by the subject teacher at the time of teaching according to the need and requirements of discipline.	

Subjects will be selected from the following list of elective subjects:

S.No	List of Elective Courses
	(Any four of the courses may be opted from the following elective courses)
	Subjects
1.	Computer aided drug designing
2.	Advanced biotechnology
3.	System biology
4.	Programming for Bioinformatics
5.	Data warehousing and data mining
6.	Molecular dynamics simulation
7.	Intelligent systems
8.	DNA microarrays and integrative genetics
9.	Functional genomics
10.	Epidemiology
11.	Advance topics in information systems
12.	Neural Computing
13.	Research Method in Biological Sciences
14.	Advanced Algorithms
15.	Current trends in bioinformatics
16.	Gene regulation and expression
17.	Principles and application of proteomics
18.	Medical genetics
19.	Epigenetics
20	Introduction and Applications of Biotechnology
20.	Advanced Computer Programming
21.	Advanced Database Systems
22.	A gile Software Development
23.	Agie Software Development
24.	Natural Language Processing
25.	Numerical Computing
20.	Advanced Digital Image Processing
27.	Mathematical modeling and Simulation
29	Molecular Biophysics
30	Neural Computing and Genetics Algorithms
31.	Pathways and Networks in Biology
32.	Bioinformatics Scripting and Programming
33	Statistical Methods for Computational Biology
34.	Stochastic Processes
35.	Advances In Molecular Dynamics
36.	Advance Molecular Techniques

Note: In addition to the above the universities can offer any elective course subject to the availability of resources

SEMESTER-III and IV

Course Name: Research Project	Course Code: BI-650	
Course Structure: Lectures: 0, Labs: 6	Credit Hours:6	
Prerequisites: None		
Course Outlines:		
1. Duration of the research project will be at least one full year. An independent research topic		
chosen by the student and supervised by a full-time faculty member of the department is required		
for all students in M.S Bioinformatics.		
2. The research work of each student will be reviewed periodically by the supervisor/head of		
department to ensure the objectives laid down for study are being met.		
3. All students must present and defend their research work before the panel of examiners as per		
the rules of the university.		

Recommended Text Books For MS Bioinformatics Programme

1. Bioinformatics: sequence and Genome Analysis, David W. Mount.

2. Bioinformatics: A practice Guide to Analysis of Gene and Proteins Andreas Baxevnis, B. F. Francis Ouellet.

- 3. Developing Bioinformatics Computer Skills, Cynthia Gibbs, Per Jambeck.
- 4. Discovering Genomics, Proteins and Bioinformatics, A. Makom Cambell, Laurie J. Heyer.
- 5. Microarray Bioinformatics, Dov Stekel, Ed Southern.
- 6. Introduction to Bioinformatics, Arthur M. Lesk.
- 7. Bioinformatics Computing, Bryan P. Bergeron.
- 8. A Primer of Genome Sequencing, Greg Gibson.
- 9. Instant Notes on Bioinformatics, Howard J. Parish.
- 10. Bioinformatics and functional Genomics, Donis Marshall, Jonathan Persner.
- 11. Bioinformatics: The Machine learning approach, Pierre Baldi, Sren Brunak, Soren Brunak.
- 12. An introduction to Bioinformatics, Algorithims Neil C. Jones, Pavel A. Persner.
- 13. Essentials of Genomics and Bioinformatics, C.W Sensen.

14. Bioinformatics, Biocomputing and Perl. An introduction to Bioinformatics Computing Skills and Practice Michael Moorhouse, Paul Berry.

- 15. Statistical Methods in Bioinformatics Warren Ewens, Gregory Grant.
- 16. Microarray for An Integrative Genomics S. Isaac, J-Atul, Alvin Khd
- 17. Bioinformatics; Sequence and Databanks: A Practical Approach Des Higgins, Willie Taylor.
- 18. Genomic Perl: From Basic To Workinf Code Rex A.Dwyer
- 19. Bioinformatics: From Genome To Drugs, Vol 1: Basic Technologies
- Vol 2: Application Thomas Lengauer.
- 20. Biotechnology, Genomics and Bioinformatics Teresa Atwood, David Perry-Smith
- 21. Introduction To Bioinformatics Teresa Atwood, David Perry-Smith
- 22. Structured Bioinformatics Philip Bourne, Helge Weissig
- 23. Bioinformatics Methods and Protocols Stephen Misener, Stephen Krawetz.
- 24. New Biology for Engineers and scientists, Aydin Tozeren, Stephen W.Byers.
- 25. Computational Molecular Biology: An Introduction, Peter Clote, RlfBackofen.

26. Bioinformatics in Post-Genomic Era: Genomic Transcription, Proteome and Information Based Medicine Jeffery Augen.

27. Bioinformatics: Using Computational Intelligence Paradims U. Seiffert, L.C.Jain, Pschwetzer

28. Introduction To Bioinformatics: a theoretical and Practical Approach Stephen Krawetz, David D.Womble.

- 29. Bioinformatics for Geneticsts, Michaeal R.Barens, Ian C.Gray.
- 30. Immunological Bioinformatics, Lund Ole Nielsen.
- 31. Bioinformatics Basics Hooman Rashidi, Lukas Buehler.
- 32. Bioinformatics: Genes, Proteins and Computers C.Orengo, D.Jones, J.Thornton.
- 33. Bioinformatics and Molecular Evolution Paul G. Higgs.
- 34. The Application of Bioinformatics in Cancer Detection Asad Umar
- 35. Bioinformatics, Ralf Hofestadt.
- 36. Bioinformatics, Genomics and Proteomics: Getting the Bio PictureAnn Batiza, Bernice Schacter
- 37. Knowledge Discovery in Proteomics Igor Jerisca, Dennis Wigle
- 38. Proteomics and Protein-Protein Introductions:
- Biology, Chemistry, Bioinformatics and Drug Design, Gabreil Waksman

39. An introduction to Bioinformatics Jermy Ramsden.

40. Bioinformatics Basics: Application in Biological Science and Medicine Hookman Rashidi, Lukas Buehler.

- 41. Medical Genetics Lynn B.Jorde, Jhon C.Carey, Micheal .Bamshad, Raymound L. White
- 42. Essential of Genetics, William S.Klug, Michel R.Cummings.

43. Thompson & Thompson Genetics in Mediccine Robert I.Nussbaum, Rodreick R.McInnes. Huntington F. Willard.

- 44. Medical Molecular Genetics, Patrick A.Hoffe.
- 45. Genomics, Sandy Primose, Richard Twyman
- 46. Essential of Medical Genetics Alan Emery, Robert Mueller.
- 47. Gene VIII Benjamin Lewin.
- 48. Understanding Biotechnology, George Acquaah.
- 49. Concept of Genetics, William Klug, Michael Cumming

Charlotte Spencer

- 50. Essential Genes, Benjamin Lewin.
- 51. Cell and Molecular Gerald Karp
- 52. Microbiology; A Human Perspective Eugene Nester, Denise Anderson, C. Evans Robert Jr.
- 53. Genetics, Benjamin A. Pierce.
- 54. Ethics from a Faith Perspective, Jack Hanford.
- 55. A companion to Genetics Justine Burrley, John Harris
- 56. Understanding Medical Statistics David Mathews, Vernon Farewell
- 57. Molecular Biology, Robert Weaver.
- 58. Lipincot's Biochemistry Champe; Harvey; Ferrier.
- 59. Harper's; Biochemistry, Murray. Grammer, Mayes, Rodwell
- 60 Lehninger; Principles of Biochemistry Nelson, Cox.
- 61 Biochemistry Donlad Voet
- 62 Pattern Recognition, Statistical, Structural & Neural Approached Robert Schalkoff
- 63 Pattern Recognition with neural networks in C++ Pandya/Macy
- 64 Pattern Classification Duda, Hart and Stork.
- 65 Fundamentals of Pattern Recognition, Monique Pavel.
- 66 Texture Analysis in Machine Vision, M.K. Pietikainen.
- 67 Genetic Algorithms for Pattern Recognition, Pal/Wang.
- 68 Digital Image Processing R.C. Gonzales
- 69 Digital Image Processing using Matlab R.C. Gonzales
- 70 Hand Book of Image Processing John C.Russ
- 71 Algorithms for Image Processing & Computer Vision, J.R. Parker.

SHAHEED BENAZIR BHUTTO WOMEN UNIVERSITY PESHAWAR

REQUIREMENT TO OPT THE RESEARCH POJECT/INTERNSHIP/OPTIONAL SUBJECTS

Students after the successful completion of 6th semester (BS Program) can opt for research project or Internship or Optional Subjects.

Criteria to opt the research Project/Internship /Optional Subjects

A. Research Project: Research project will be embarked upon during the final year (7th & 8th Semesters) of studies under the guidance of a supervisor. Research Project will carry a weight of 6 Credit Hours. Minimum requirement to opt for research project will be 3.00CGPA.

B. Internship: Students with CGPA< 3.00 can opt internship during the final year of studies along with one optional subject of 3 Credit Hours of their choice from the elective courses offered by the university/institution. The internship will carry a weight of 3 Credit Hours.

OR

C. Optional Subjects: In the last two semesters (7th & 8th Semesters) students with CGPA< 3.00 can opt for two courses (one course in each semester) of their choice instead of Research Project/Internship from the elective courses offered by the university/institution.